

What happens when you pull on an axon?

Chantal Tassius¹, Roberto Bernal^{1,2} Pramod Pullarkat³ & Francisco Melo¹ ¹Laboratorio de Física No Lineal, Universidad de Santiago, Chile ² Department of Organismic and Evolutionary Biology, Harvard University, Boston, USA
³ University of Bayreuth, Germany contact: ctassius@fisica.usach.cl

1. Biological system

Neurons and axons basic components:

Are we able to probe the mechanical characteristics of axons?

Morphological anomalies observed under stress:

Oxidative stress induces axonal beading in cultured human brain tissue [Roediger & Armati, 2003]

High Tolerance and Delayed Elastic Response of Cultured Axons to Dynamic Stretch Injury [Smith & al., 1999]

2. Experimental set-ups

Deformation by glass micro-needles:

Deformation by a hydrodynamic flow:

3. Results

From micro-needle experiments:

Excellent fit of experimental data by a relation derivated from a Hooke's law hypothesis \longrightarrow T₀, κ

From hydrodynamic flow experiments:

ω: viscous drag P. Pullarkat Bayreuth, Germany

4. Model proposed *

contribution

From visco-elastic passive to "active" behavior:

5. Perspectives

Idea: use of "speckle fluorescence

How Microtubules Get

Fluorescent Speckles

[Waterman-Storer & Salmon, 1998]

*R. Bernal & F. Melo